Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota
Abstract
:1. Introduction
2. Microorganisms Responsible of Eye Infections
3. Burden of Antibiotic Resistance to Ocular Drugs
4. Role of Biofilm in Eye Infections
5. Microbiota: An “Organ” to Safeguard During Antibiotic Treatment
6. Discussion
Funding
Conflicts of Interest
References
- The Review on Antimicrobial Resistance, chaired by Jim O’Neill. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Dec 2014. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States. Am. Fam. Physician 2013, 1–114. Available online: http://www.jpiamr.eu/wp-content/uploads/2014/12/AMR-Review-Paper-Tackling-a-crisis-for-the-health-and-wealth-of-nations_1-2.pdf (accessed on 20 August 2019).
- De Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Honigsbaum, M. Superbugs and us. Lancet 2018, 391, 420. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Rodríguez-Baño, J.; Arslan, H.; Pitout, J.D.; Quentin, C.; Calbo, E.S.; Azap, O.K.; Arpin, C.; Pascual, A.; Livermore, D.M.; et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin. Infect. Dis. 2009, 49, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-resistant Enterobacteriaceae: Epidemiology and prevention. Clin. Infect. Dis. 2011, 53, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertino, J.S., Jr. Impact of antibiotic resistance in the management of ocular infections: The role of current and future antibiotics. Clin. Ophthalmol. 2009, 3, 507–521. [Google Scholar] [CrossRef]
- Dave, S.B.; Toma, H.S.; Kim, S.J. Changes in ocular flora in eyes exposed to ophthalmic antibiotics. Ophthalmology 2013, 120, 937–941. [Google Scholar] [CrossRef]
- Daum, R.S.; Cohen, D.L.; Smith, A.L. Fatal aplastic anemia following apparent ‘‘dose-related’’ chloramphenicol toxicity. J. Pediatr. 1979, 94, 403–406. [Google Scholar] [CrossRef]
- Polin, H.B.; Plaut, M.E. Chloramphenicol. N. Y. State J. Med. 1977, 77, 378–381. [Google Scholar]
- Yunis, A.A.; Miller, A.M.; Salem, Z.; Arimura, G.K. Chloramphenicol toxicity: Pathogenetic mechanisms and the role of the p-NO2 in aplastic anemia. Clin. Toxicol. 1980, 17, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Tisdale, J.; Barrett, A.J.; Dunbar, C.E.; Young, N.S. Hepatitis-associated aplastic anemia. N. Eng. J. Med. 1997, 336, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Rauff, B.; Idrees, M.; Shah, S.A.; Butt, S.; Butt, A.M.; Ali, L.; Hussain, A.; Ali, M. Hepatitis associated aplastic anemia: A review. Virol. J. 2011, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.J.; Arimura, G.K.; Abou-Khalil, W.H.; Isildar, M.; Yunis, A.A. Chloramphenicol-induced bone marrow injury: Possible role of bacterial metabolites of chloramphenicol. Blood 1987, 70, 1180–1185. [Google Scholar] [PubMed]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Čivljak, R.; Giannella, M.; Di Bella, S.; Petrosillo, N. Could chloramphenicol be used against ESKAPE pathogens? A review of in vitro data in the literature from the 21st century. Expert Rev. Anti. Infect. Ther. 2014, 12, 249–264. [Google Scholar] [CrossRef]
- Joseph, M.R.; Al-Hakami, A.M.; Assiry, M.M.; Jamil, A.S.; Assiry, A.M.; Shaker, M.A.; Hamid, M.E. In vitro anti-yeast activity of chloramphenicol: A preliminary report. J. Mycol. Med. 2015, 25, 17–22. [Google Scholar] [CrossRef]
- Callegan, M.C.; Gilmore, M.S.; Gregory, M.; Ramadan, R.T.; Wiskur, B.J.; Moyer, A.L.; Novosad, B.D. Bacterial endophthalmitis: Therapeutic challenges and host-pathogen interactions. Prog. Retin. Eye Res. 2007, 26, 189–203. [Google Scholar] [CrossRef]
- American Academy of Ophthalmology. Summary Benchmarks for Preferred Practice Pattern Guidelines; American Academy of Ophthalmology: San Francisco, CA, USA, 2007. [Google Scholar]
- Hwang, D.G. The top four errors in prescribing antibiotics. Cataract Refract. Surg. Today 2005, 1, 55–58. [Google Scholar]
- Yam, J.C.; Kwok, A.K. Update of the management of postoperative endophthalmitis. Hong Kong Med. J. 2004, 10, 337–343. [Google Scholar]
- Chhabra, S.; Kunimoto, D.Y.; Kazi, L.; Regillo, C.D.; Ho, A.C.; Belmont, J.; Brown, G.C. Endophthalmitis after open globe injury: Microbiologic spectrum and susceptibilities of isolates. Am. J. Ophthalmol. 2006, 142, 852–854. [Google Scholar] [CrossRef] [PubMed]
- Cavuoto, K.; Zutshi, D.; Karp, C.L.; Miller, D.; Feuer, W. Update on bacterial conjunctivitis in South Florida. Ophthalmology 2008, 115, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Pachigolla, G.; Blomquist, P.; Cavanagh, H.D. Microbial keratitis pathogens and antibiotic susceptibilities: A 5-year review of cases at an urban county hospital in north Texas. Eye Contact Lens 2007, 33, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Groden, L.; Murphy, B.; Rodnite, J.; Genvert, G.I. Lid flora in blepharitis. Cornea 1991, 10, 50–53. [Google Scholar] [CrossRef]
- Rutar, T.; Zwick, O.M.; Cockerham, K.P.; Horton, J.C. Bilateral blindness from orbital cellulitis caused by community-acquired methicillinresistant Staphylococcus aureus. Am. J. Ophthalmol. 2005, 140, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, D.; Rubowitz, A.; Assia, E. Changing bacterial isolates and antibiotic sensitivities of purulent dacryocystitis. Orbit 2005, 24, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef] [PubMed]
- Gentile, R.C.; Shukla, S.; Shah, M.; Ritterband, D.C.; Engelbert, M.; Davis, A.; Hu, D.N. Microbiological spectrum and antibiotic sensitivity in endophthalmitis: A 25-year review. Ophthalmology 2014, 121, 1634–1642. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.V.; Chang, T.C.; Cavuoto, K.M. Patient demographic and microbiology trends in bacterial conjunctivitis in children. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2018, 22, 66–67. [Google Scholar] [CrossRef]
- Chang, V.S.; Dhaliwal, D.K.; Raju, L.; Kowalski, R.P. Antibiotic resistance in the treatment of Staphylococcus aureus keratitis: A 20-year review. Cornea 2015, 34, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Carnt, N. Contact lens-related microbial keratitis: How have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye 2012, 26, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.; Glasser, D. Antibiotic therapy for ocular infection. West J. Med. 1994, 161, 579–584. [Google Scholar] [PubMed]
- Asbell, P.A.; Colby, K.A.; Deng, S.; McDonnell, P.; Meisler, D.M.; Raizman, M.B.; Sahm, D.F. Ocular TRUST: Nationwide antimicrobial susceptibility patterns in ocular isolates. Am. J. Ophthalmol. 2008, 145, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Asbell, P.A.; Sahm, D.F.; Shaw, M.; Draghi, D.C.; Brown, N.P. Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005. J. Cataract Refract. Surg. 2008, 34, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Hovding, G. Acute bacterial conjunctivitis. Acta Ophthalmol. 2008, 86, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Marangon, F.B.; Miller, D.; Muallem, M.S.; Romano, A.C.; Alfonso, E.C. Ciprofloxacin and Levofloxacin Resistance Among Methicillin-sensitive Staphylococcus aureus Isolates From Keratitis and Conjunctivitis. Am. J. Ophthalmol. 2004, 137, 453–458. [Google Scholar] [CrossRef]
- Galvis, V.; Tello, A.; Guerra, A.R.; Acuña, M.F.; Villarreal, D. Ocular flora and their antibiotic resistance patterns in the midwest: A prospective study of patients undergoing cataract surgery. Am. J. Ophthalmol. 2013, 156, 623–624. [Google Scholar] [CrossRef] [PubMed]
- Chalita, M.R.; Höfling-Lima, A.L.; Paranhos, A., Jr.; Schor, P.; Belfort, R. Shifting trends in in vitro antibiotic susceptibilities for common ocular isolates during a period of 15 years. Am. J. Ophthalmol. 2004, 13, 43–51. [Google Scholar] [CrossRef]
- Shanmuganathan, V.A.; Armstrong, M.; Buller, A.; Tullo, A.B. External ocular infections due to methicillin-resistant Staphylococcus aureus (MRSA). Eye 2005, 19, 284–291. [Google Scholar] [CrossRef]
- Thomas, R.K.; Melton, R.; Asbell, P.A. Antibiotic resistance among ocular pathogens: Current trends from the ARMOR surveillance study (2009–2016). Clin. Optom. 2019, 11, 15–26. [Google Scholar] [CrossRef]
- Deguchi, H.; Kitazawa, K.; Kayukawa, K.; Kondoh, E.; Fukumoto, A.; Yamasaki, T.; Kinoshita, S.; Sotozono, C. The trend of resistance to antibiotics for ocular infection of Staphylococcus aureus, coagulase-negative staphylococci, and Corynebacterium compared with 10-years previous: A retrospective observational study. PLoS ONE 2018, 13, e0203705. [Google Scholar] [CrossRef]
- Eguchi, H.; Kuwahara, T.; Miyamoto, T.; Nakayama-Imaohji, H.; Ichimura, M.; Hayashi, T.; Shiota, H. High-level fluoroquinolone resistance in ophthalmic clinical isolates belonging to the species Corynebacterium macginleyi. J. Clin. Microbiol. 2008, 46, 527–532. [Google Scholar] [CrossRef]
- Das, M.K.; Pathengay, A.; Shah, G.Y.; Koday, N.K. Vancomycin-resistant coagulase negative Staphylococcus endophthalmitis following cataract surgery. J. Cataract Refract. Surg. 2011, 37, 1908–1909. [Google Scholar] [CrossRef]
- Banerjee, T.; Anupurba, S. Colonization with vancomycin-intermediate Staphylococcus aureus strains containing the vanA resistance gene in a tertiary-care center in north India. J. Clin. Microbiol. 2012, 50, 1730–1732. [Google Scholar] [CrossRef]
- Jin, H.; Parker, W.T.; Law, N.W.; Clarke, C.L.; Gisseman, J.D.; Pflugfelder, S.C.; Al-Mohtaseb, Z.N. Evolving risk factors and antibiotic sensitivity patterns for microbial keratitis at a large county hospital. Br. J. Ophthalmol. 2017, 101, 1483–1487. [Google Scholar] [CrossRef]
- Behlau, I.; Gilmore, M.S. Microbial Biofilms in Ophthalmology and Infectious Disease. Arch. Ophthalmol. 2008, 126, 1572–1581. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, A.; Graue-Hernandez, E.O.; Bermudez-Magner, J.A.; Ramirez-Miranda, A.; Irusteta, L.; Bautista-de Lucio, V.M.; Ponce-Angulo, D.G.; Bautista- Hernandez, L.A.; Navas, A. Corneal Biofilm Plaques: A Novel Clinical Presentation. Cornea 2019, 38, 764–767. [Google Scholar] [CrossRef]
- Romanò, C.L.; Romanò, D.; Morelli, I.; Drago, L. The Concept of Biofilm-Related Implant Malfunction and “Low-Grade Infection”. Adv. Exp. Med. Biol. 2017, 971, 1–13. [Google Scholar]
- Holland, S.P.; Mathias, R.G.; Morck, D.W.; Chiu, J.; Slade, S.G. Diffuse lamellar keratitis related to endotoxins released from sterilizer reservoir biofilms. Ophthalmology 2000, 107, 1227–1233. [Google Scholar] [CrossRef]
- McLaughlin-Borlace, L.F.; Stapleton, F.; Matheson, M.; Dart, J.K. Bacterial biofilm on contact lenses and lens storage cases in wearers with microbial keratitis. J. Appl. Microbiol. 1998, 84, 827–838. [Google Scholar] [CrossRef]
- Perilli, R.; Marziano, M.L.; Formizano, G.; Caiazza, S.; Scorcia, G.; Baldassarri, L. Alteration of organized structure of biofilm formed by Staphylococcus epidermidis on soft contact lenses. J. Biomed. Mater. Res. 2000, 49, 53–57. [Google Scholar] [CrossRef]
- Yokoi, N.; Okada, K.; Sugita, J.; Kinoshita, S. Acute conjunctivitis associated biofilm formation on a punctual plug. Jpn. J. Ophthalmol. 2000, 44, 559–560. [Google Scholar] [CrossRef]
- Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886. [Google Scholar] [CrossRef]
- Anderl, J.N.; Franklin, M.J. Role of antibiotic penetration: Limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 2000, 44, 1818–1824. [Google Scholar] [CrossRef]
- Ciofu, O.; Rojo-Molinero, E.; Macià, M.D.; Oliver, A. Antibiotic treatment of biofilm infections. Acta Pathol. Microbiol. Immunol. Scand. 2017, 125, 304–319. [Google Scholar] [CrossRef]
- Hume, E.B.; Stapleton, F.; Willcox, M.D. Evasion of cellular ocular defenses by contact lens isolates of Serratia marcescens. Eye Contact Lens 2003, 29, 108–112. [Google Scholar] [CrossRef]
- Ray, C.; Shenoy, A.T.; Orihuela, C.J.; González-Juarbe, N. Killing of Serratia marcescens biofilms with chloramphenicol. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 19. [Google Scholar] [CrossRef] [Green Version]
- Rajasekaran, G.; Kim, E.Y.; Shin, S.Y. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Biochim. Biophys. Acta Biomembr. 2017, 1859, 722–733. [Google Scholar] [CrossRef]
- Singh, R.; Sahore, S.; Kaur, P.; Rani, A.; Ray, P. Penetration barrier contributes to bacterial biofilm-associated resistance against only select antibiotics, and exhibits genus-, strain- and antibiotic-specific differences. Pathog. Dis. 2016, 74. [Google Scholar] [CrossRef]
- Liaqat, I.; Sumbal, F.; Sabri, A.N. Tetracycline and chloramphenicol efficiency against selected biofilm forming bacteria. Curr. Microbiol. 2009, 59, 212–220. [Google Scholar] [CrossRef]
- Beloin, C.; Renard, S.; Ghigo, J.M.; Lebeaux, D. Novel approaches to combat bacterial biofilms. Curr. Opin. Pharmacol. 2014, 18, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Willcox, M.D.; Harmis, N.; Cowell, B.A.; Williams, T.; Holden, B. ABacterial interactions with contact lenses; effects of lens material, lens wear and microbial physiology. Biomaterials 2001, 22, 3235–3247. [Google Scholar] [CrossRef]
- Drago, L.; De Vecchi, E.; Nicola, L.; Gismondo, M.R. Antimicrobial activity and interference of tobramycin and chloramphenicol on bacterial adhesion to intraocular lenses. Drugs Exp. Clin. Res. 2003, 29, 25–35. [Google Scholar]
- Leger, A.J. Visions of Eye Commensals: The Known and the Unknown About How the Microbiome Affects Eye Disease. BioEssays 2018, 40, e1800046. [Google Scholar] [CrossRef]
- Vavricka, S.R.; Schoepfer, A.; Scharl, M.; Lakatos, P.L.; Navarini, A.; Rogler, G. Extraintestinal Manifestations of Inflammatory Bowel Disease. World J. Gastroenterol. 2015, 21, 1982–1992. [Google Scholar] [Green Version]
- Kugadas, A.; Gadjeva, M. Impact of Microbiome on Ocular Health. Ocul. Surf. 2016, 14, 329–342. [Google Scholar] [CrossRef]
- Ozkan, J.; Willcox, M.D. The Ocular Microbiome: Molecular Characterisation of a Unique and Low Microbial Environment. Curr. Eye Res. 2019, 44, 685–694. [Google Scholar] [CrossRef]
- Leger, A.J.S.; Desai, J.V.; Drummond, R.A.; Kugadas, A.; Almaghrabi, F.; Silver, P.; Caspi, R. RAn ocular commensal protects against corneal infection by driving an Interleukin 17 response from mucosal γδ T cells. Immunity 2017, 47, 148–158. [Google Scholar] [CrossRef]
- Kugadas, A.; Christiansen, S.H.; Sankaranarayanan, S.; Surana, N.K.; Gauguet, S.; Kunz, R.; Gadjeva, M. Impact of microbiota on resistance to ocular Pseudomonas aeruginosa-induced keratitis. PLoS Pathog. 2016, 12, e1005855. [Google Scholar] [CrossRef]
- Yang, J.J.; Wang, J.T.; Cheng, A.; Chuang, Y.C.; Sheng, W.H. Impact of broad-spectrum antimicrobial treatment on the ecology of intestinal flora. J. Microbiol. Immunol. Infect. 2018, 51, 681–687. [Google Scholar] [CrossRef]
- De Lastours, V.; Fantin, B. Impact of fluoroquinolones on human microbiota. Focus on the emergence of antibiotic resistance. Future Microbiol. 2015, 10, 1241–1255. [Google Scholar] [CrossRef]
- De Lastours, V.; Maugy, E.; Mathy, V.; Chau, F.; Rossi, B.; Guérin, F.; Cattoir, V.; Fantin, B. CIPHARES Study Group. Ecological impact of ciprofloxacin on commensal enterococci in healthy volunteers. J. Antimicrob. Chemother. 2017, 72, 1574–1580. [Google Scholar] [CrossRef]
- Rashid, M.U.; Weintraub, A.; Nord, C.E. Development of antimicrobial resistance in the normal anaerobic microbiota during one year after administration of clindamycin or ciprofloxacin. Anaerobe 2015, 31, 72–77. [Google Scholar] [CrossRef]
- Munier, A.L.; De Lastours, V.; Barbier, F.; Chau, F.; Fantin, B.; Ruimy, R. Comparative dynamics of the emergence of fluoroquinolone resistance in staphylococci from the nasal microbiota of patients treated with fluoroquinolones according to their environment. Int. J. Antimicrob. Agents 2015, 46, 653–659. [Google Scholar] [CrossRef]
- Rahal, J.J.; Simberkoff, M.S. Bactericidal and Bacteriostatic Action of Chloramphenicol Against Meningeal Pathogens. Antimicrob. Agents Chemother. 1979, 16, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Kitazawa, K.; Sotozono, C.; Sakamoto, M.; Sasaki, M.; Hieda, O.; Yamasaki, T.; Kinoshita, S. Nasal and conjunctival screening prior to refractive surgery: An observational and cross-sectional study. BMJ Open 2016, 6, e010733. [Google Scholar] [CrossRef]
- Benitez-Del-Castillo, J.; Verboven, Y.; Stroman, D.; Kodjikian, L. The role of topical moxifloxacin, a new antibacterial in Europe, in the treatment of bacterial conjunctivitis. Clin. Drug Investig. 2011, 31, 543–557. [Google Scholar] [CrossRef]
- Blondeau, J.M.; Hansen, G.; Metzler, K.; Hedlin, P. The role of PK/PD parameters to avoid selection and increase of resistance: Mutant prevention concentration. J. Chemother. 2004, 16, S1–S19. [Google Scholar] [CrossRef]
- Hwang, D.G. Fluoroquinolone resistance in ophthalmology and the potential role for newer ophthalmic fluoroquinolones. Surv. Ophthalmol. 2004, 49, S79–S83. [Google Scholar] [CrossRef]
- Dong, B.J.; Iovieno, A.; Bates, B.; Garoutte, A.; Miller, D.; Revanna, K.V.; Gao, X.; Antonopoulos, D.A.; Slepak, V.Z.; Shestopalov, V.I. Diversity of Bacteria at Healthy Human Conjunctiva. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5408–5413. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Activity | References |
---|---|---|
Spectrum of Activity | S.aureus (MRSA) S.epidermidis (MRSE) CoNS Streptococcus Pseudomonas Corynebacteria | [39,40,41,42] |
Antibiofilm activity | Biofilm penetration Biomass reduction Adhesion interference | [50,59,60,61,62,63,64] |
Ocular Microbiota protection * | Bacteriostatic vs. Bactericidal microbiota disturbance | [18,67,68,70,72,73,74,75,76] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drago, L. Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota. Microorganisms 2019, 7, 278. https://doi.org/10.3390/microorganisms7090278
Drago L. Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota. Microorganisms. 2019; 7(9):278. https://doi.org/10.3390/microorganisms7090278
Chicago/Turabian StyleDrago, Lorenzo. 2019. "Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota" Microorganisms 7, no. 9: 278. https://doi.org/10.3390/microorganisms7090278
APA StyleDrago, L. (2019). Chloramphenicol Resurrected: A Journey from Antibiotic Resistance in Eye Infections to Biofilm and Ocular Microbiota. Microorganisms, 7(9), 278. https://doi.org/10.3390/microorganisms7090278